Mixed Logit, Geographically Weighted Choice Models, or One-Step Bayesian Estimation?

Wiktor Budziński

Mikołaj Czajkowski

Two-step method (Mixed Logit)

- Estimating Mixed logit model as a first step
 - Predicting individual-specific WTP, by using posterior means of random parameters given by the Bayes formula:

$$E(\alpha_n \mid y_n, X_n, \theta) = \int \alpha_n \frac{p(y_n \mid X_n, \theta, \alpha_n, \beta_n^{\text{cost}}) f(\alpha_n, \beta_n^{\text{cost}} \mid \theta)}{p(y_n \mid X_n, \theta)} d(\alpha_n, \beta_n^{\text{cost}})$$

- Estimating (panel) regression on these estimates
 - Abildtrup, J., Garcia, S., Olsen, S. B., & Stenger, A. (2013). Spatial preference heterogeneity in forest recreation. *Ecological economics*, *92*, 67-77.
- Or estimating spatial (panel) regression models
 - Spatial lag or spatial error
 - Czajkowski, M., Budziński, W., Campbell, D., Giergiczny, M., and Hanley, N., forthcoming. Spatial heterogeneity of willingness to pay for forest management. Environmental and Resource Economics.

Two-step method (Mixed Logit)

- Or using kriging to obtain WTP map
 - Campbell, D. (2007). Willingness to Pay for Rural Landscape Improvements: Combining Mixed Logit and Random-Effects Models. Journal of agricultural economics, 58(3), 467-483.

Two-step method (Mixed Logit)

- Advantages:
 - No additional programming needed, uses only standard models
 - Takes into account different sources of preferences heterogeneity (not only spatial)
- Disadvantages:
 - Rely on parametric distributions
 - First step ignores spatial dependencies
 - Posterior means may not describe individual-specific parameters well

Geographically weighted choice models

- Growing interest in so called local-models
 - Non-linear effects of attributes on choices
 - Preference dynamics
 - Spatial dependencies
- For every location separate model is estimated using weighted Maximum Likelihood

$$\boldsymbol{\beta}_i = \arg \max\left(\sum_j w_{ij} L L_j\right)$$

- We use Geographically Weighted Multinomial logit
 - Budziński, W., Campbell, D., Czajkowski, M., Demšar, U., and Hanley, N., Using geographically weighted choice models to account for spatial heterogeneity of preferences.

Geographically weighted choice models

- Different weighting schemes
 - Gaussian weighting:

$$w_{ij} = \exp\left(-0.5\frac{\left(Lat_i - Lat_j\right)^2 + \left(Long_i - Long_j\right)^2}{b^2}\right)$$

- Spatially varying kernel: $w_{ij} = \exp\left(-\frac{R_{i,j}}{b}\right)$
- Depends on so called bandwidth parameter b which cannot be estimated
 - Needs to be determined based on some penalized fit function
 - Or by 'eyeballing'

Geographically weighted choice models

- Advantages
 - Non-parametric method
 - Directly accounts for spatial dependencies
- Disadvantages
 - GW-MNL does not account for other sources of heterogeneity
 - Possible solution local latent class/mixed logit models
 - Choice of the bandwidth is quite arbitrary
 - It is not easy to include socio-demographic variables

One-step method (Bayesian)

 It is possible to estimate Mixed logit model which directly accounts for spatial autocorrelation of preferences

$$U_{ij} = \beta_i X_{ij} + \varepsilon_{ij}$$

$$\beta_i = \beta + \theta_i$$

$$\theta_i = u_i + \rho \sum w_{ik} \theta_k \quad where \ u_i \sim N(0, \sigma)$$

• Likelihood function is complicated, therefore it is convenient to apply Bayesian methods

One-step method (Bayesian)

- Advantages
 - Directly accounts for spatial dependencies
 - Allows for other sources of heterogeneity
- Disadvantages
 - Computationally intensive
 - Current algorithm is inefficient
 - Still relies on parametric distributions
 - Also relies on posterior means

Simulation

- Comparison of three approaches
- 30 repetitions (for now)
- Datasets with
 - 1000 respondents
 - 6 choice tasks
 - 3 alternatives
 - 2 attributes (quality and cost)
- Two preference heterogeneity types
 - Spatially autocorrelated
 - Distance decay type (deterministic)

Spatially autocorrelated

Distance decay type (deterministic)

Spatially autocorrelated

WTP distribution percentiles

	5	25	50	75	95			
True	-0.2063	0.5050	0.9206	1.5628	4.429			
GWR	0.2836	0.6699	0.9687	1.3877	2.8988			
One step (Bayesian)	-0.7152	0.6282	1.026	1.6182	4.2101			
Two Step (MXL)	-1.5685	0.5449	0.9757	1.6319	4.7847			
		Median absolute Errors						
		Min	Mean	Max				
GWR		0.3904	0.4555	0.5140				
One step (Bayesian)		0.4358	0.5067	0.6059				
Two Step (MXL)		0.4522	0.5694	0.7176				

Spatially autocorrelated

- Are MXL-based models really worse?
 - Posterior mean WTP may not exist...
 - They recover parameters quite well:

	True	One step	Two Step	Median absolute Errors			
	2	(Bayesian)			Min	Mean	Max
Means	_2 _2	1.9054 -2.0005	1.9050	One sten	0.5222	0.5606	0.5919
	1	0.9900	1.1850	(Bayesian)	0.5039	0.5681	0.6033
Variance	1	1.0335	1.2622	Two Stop	0.5215	0.5837	0.6446
Spatial	0.6	0.5351	0.0000	(MXL)	0.5272	0.5964	0.6716
autocorrelation	0.6	0.5159	0.0000	/			

Distance decay type (deterministic)

	WTP distribution percentiles					
	5	25	50	75	95	
True	-2.5945	0.7282	1.567	2.3236	2.7286	
GWR	-2.2624	0.5207	1.3597	1.8408	2.9322	
One step (Bayesian)	-5.2994	-0.1851	1.3466	2.2252	6.6373	
Two Step (MXL)	-3.4842	0.0651	1.6719	3.1186	5.5447	
	Median absolute Errors					
		Min	Mean	Max		
GWR		0.3320	0.4006	0.4678		
One step (Bayesian)		0.7042	0.9106	1.0871		
Two Step (MXL)		0.9894	1.2303	1.6007		

Conclusions

- It seems that Geographically weighted choice model performs best in both scenarios
 - Possibly influenced by the choice of bandwidth
- Errors significantly higher when using mean absolute errors
- Other types of spatial heterogeneity?