Marine trade-offs: comparing the benefits of off-shore wind farms and marine protected areas

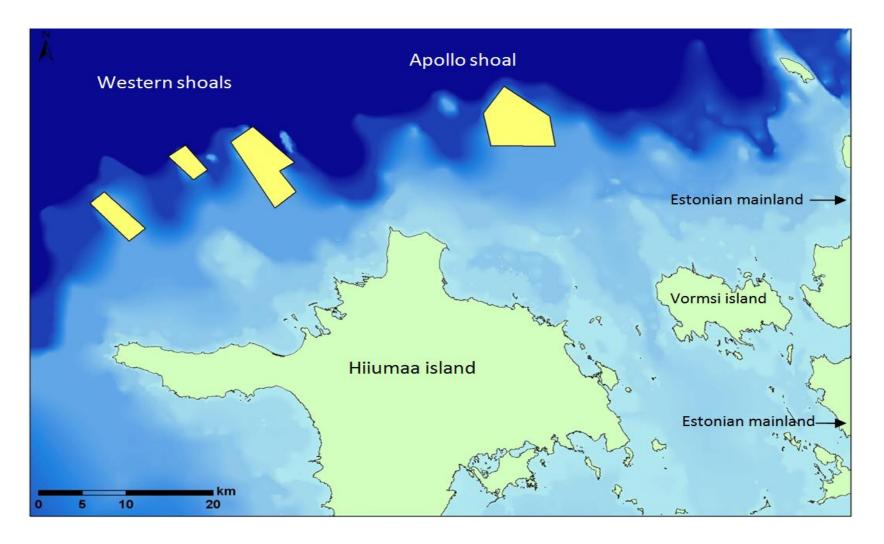
Mikołaj Czajkowski cza**j.**org

Karlõševa, A., Nõmmann, S., Nõmmann, T., Urbel-Piirsalu, E., Budziński, W., Czajkowski, M., and Hanley, N., 2016. Marine trade-offs: comparing the benefits of off-shore wind farms and marine protected areas. *Energy Economics*, 55:127-134.

Highlights

- -We analyse the trade-offs between wind energy production and the designation of marine protected areas in Estonia
- -Discrete choice modelling is used to estimate the relative welfare effects of 3 design options in two locations
- We use the latent class mixed logit model in willingness to pay space – the model shows distinct preference heterogeneity both within and between latent classes of respondents
- On average, people prefer "eco" windfarms or marine protected areas to conventional windfarms

Policy context

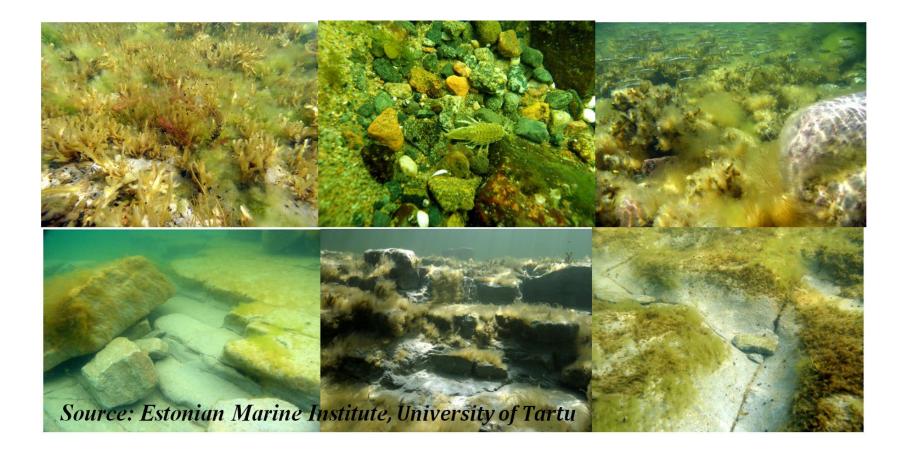

- -Climate and energy policies require the reduction of CO₂ emissions and an increase in the share of renewables in the energy mix
- -Wind turbines require space and are often contested by local inhabitants
- -Growing interest in locating new windfarms off-shore, away from inhabited areas
- Previous economic valuation studies show both support for and opposition towards off-shore renewable installations

Policy context cont.

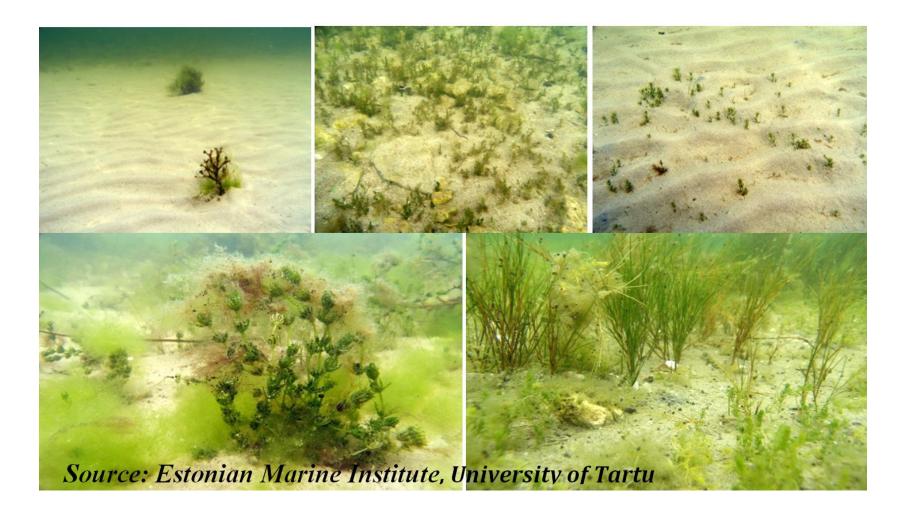
-Any new investment in off-shore wind energy:

- Economic benefits those who support the expansion of renewables, the value of electricity produced and the savings in CO₂ and other emissions
- Economic costs those who oppose specific investments
- Competing use of marine shoals Marine Protected Area:
 - Important tool of ecosystem-based marine spatial management balance the increasing diversity and intensity of human activities with the sea's ability to provide ecosystem services
 - Empirical studies report positive WTP for establishing MPA, typically with preferences for more stringent restrictions on allowed uses of these areas

The study site: shallow marine areas north-west of Hiiumaa island in Estonia


The study site:

shallow marine areas north-west of Hiiumaa island in Estonia


–Marine shoals:

- -A good opportunity for installing wind turbines
- -Siting wind farms can damage their ecological quality
- -Ecologically valuable reef and sandbank habitats
 - Rich spawning areas for fish and good habitat for birds and sea mammals
 - -Relatively more sandbank habitats on the Apollo shoal (8% of the area)
 - It provides a habitat for many seabird species, including the long-tailed duck
 - Relatively more reef habitats on the Western shoals (30% of the area)
 - Reef habitats are relatively rare in the Baltic Sea and they are biodiversity hot spots

Reef habitats

Sandbank habitats

Seabirds on the shoals

Long-tailed Duck, Common Scoter, Common Eider, Herring Gull, Little Gull

Management options

-Currently - to a large extent undisturbed

- -Plan A: constructing wind energy farms
 - -Approximately 200 wind turbines
 - Up to 22% of Estonian total electricity production
 - Contribute to the energy security, increase the share of renewables, replace oil shale
 - -Temporary but major pressures on the marine environment of Hiiumaa shoals:
 - Bottom habitats strongly affected during construction; marine mammals, fish and birds would all be disturbed
 - The impact on marine life during the operation phase is unclear; use of the shoals by birds would probably be limited

Management options cont.

-Plan B: constructing "eco wind farms"

- Minimize environmental pressures
- Wind turbines located where valuable bottom habitats are not present
- Decreased number of wind turbines, increased power capacity of each turbine (the production of the same amount of electricity with reduced impacts on birds)
- The use of the best available techniques in order to minimize the effects on the environment both during construction and operation phase
- -Plan C: establishing marine protected areas
 - Currently about 27% of marine waters in Estonia are under some form of regulated use (i.e. no fishing, mining or installation of wind turbines allowed)

The discrete choice experiment setup

-An example of a choice card (translation):

	Status Quo	Alternative A	Alternative B
Apollo shoal	No change	ECO-WF	MPA
Western shoals	No change	WF	No change
Cost to your household (EUR per year)	0	20	10
YOUR CHOICE			

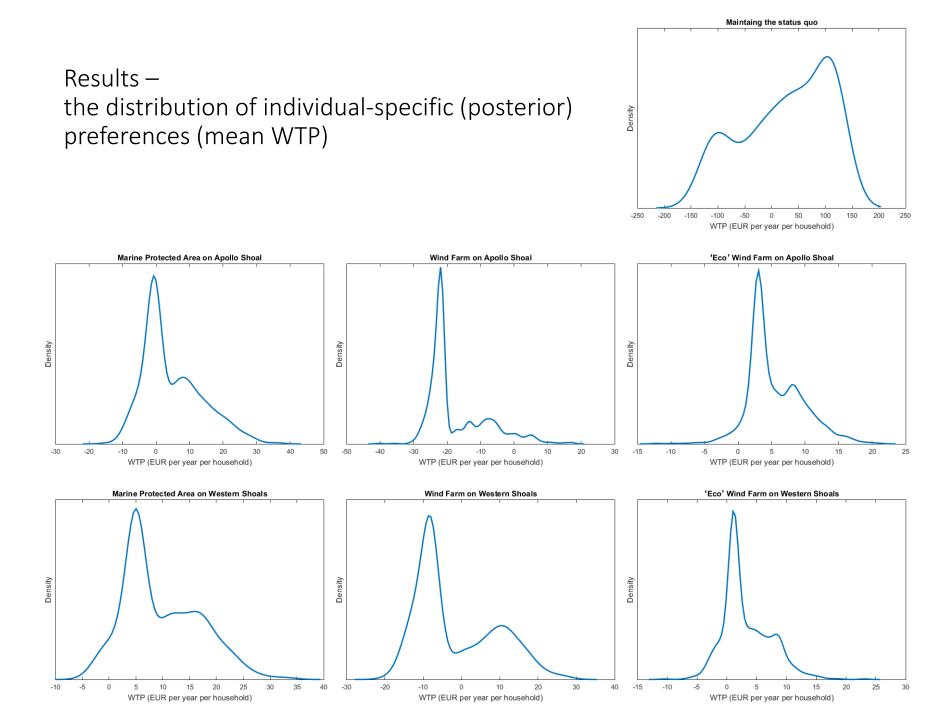
-CAWI

-The sample of 800 respondents quota-controlled for gender, age, nationality and place of residence

Econometric approach

- -The latent class mixed logit model (LCMXL)
 - Segmentation of similar preference components into classes
 - Unobserved preference heterogeneity within these classes (via random parameters)
 - More flexibility in representing preference heterogeneity than the standard latent class model or the mixed logit model

- Possibility of multi-modal preferences


- In WTP-space

$$P(y_i \mid \mathbf{X}_i, \mathbf{Z}_i, \mathbf{\Omega}) = \sum_{c=1}^{C} \pi_c P(y_i \mid \mathbf{X}_i, \mathbf{\Omega}^c, class = c)$$

$$\pi_c = \frac{\exp(\boldsymbol{\theta}_c' \mathbf{Z}_i)}{1 + \sum_{k=1}^{C-1} \exp(\boldsymbol{\theta}_k' \mathbf{Z}_i)} \quad P(y_i \mid \mathbf{X}_i, \mathbf{\Omega}^c, class = c) = \int \prod_{t=1}^{T_i} \frac{\exp(\sigma_i^c a_i^c(p_{ijt} + \boldsymbol{\beta}_i^{c'} \mathbf{X}_{ijt})))}{\sum_{k=1}^{C} \exp(\sigma_i^c a_i^c(p_{ikt} + \boldsymbol{\beta}_i^{c'} \mathbf{X}_{ikt})))} d(a_i^c, \boldsymbol{\beta}_i^c)$$

Results – marginal WTP (EUR / household / year)

	Latent class 1		Latent class 2		Latent class 3			
Preference parameters								
	mean	st. dev.	mean	st. dev.	mean	st. dev.		
Status quo (alternative	-45.65	270.08***	-6.65**	21.17***	11.26***	12.30***		
specific constant)	(23.69)	(57.81)	(2.77)	(2.67)	(0.77)	(0.01)		
Marine Protected Area	29.87***	4.90	-17.78***	37.10***	0.34**	0.75***		
on Apollo Shoal	(4.32)	(10.25)	(3.63)	(4.85)	(0.17)	(0.45)		
Wind Farm on Apollo	11.29***	11.15***	-73.00***	29.49***	0.49	0.08		
Shoal	(3.49)	(4.72)	(9.72)	(6.89)	(0.50)	(0.42)		
'Eco' Wind Farm on	13.93***	1.33	7.13***	20.69***	-0.06	1.85***		
Apollo Shoal	(3.30)	(25.54)	(2.42)	(2.29)	(0.79)	(0.78)		
Marine Protected Area	32.83***	0.04	-3.26	32.98***	0.72	0.03		
on Western Shoals	(4.74)	(78.38)	(3.50)	(4.10)	(0.69)	(1.07)		
Wind Farm on Western	26.19***	1.71	-39.10***	41.15***	0.03	2.59***		
Shoals	(4.93)	(20.23)	(5.10)	(5.51)	(0.75)	(0.04)		
'Eco' Wind Farm on	12.41***	6.46	-0.80	19.07***	-0.21	0.01		
Western Shoals	(3.13)	(6.61)	(2.54)	(2.70)	(0.57)	(0.47)		
Annual cost per	-13.77***	8.36***	-0.80	6.27***	57.59***	41.95***		
household (scale)	(1.73)	(1.71)	(1.10)	(1.44)	(15.44)	(18.04)		
Average class probabilities								
	0.34		0.34		0.32			

Results –

simulated welfare changes associated with the implementing a uniform policy on all of the shoals (EUR / year / household)

	Marine Protected Areas	Conventional Wind Farms	ECO-Wind Farms
Mean	29.13	-10.47	25.46
(st.error)	(8.9458)	(9.8009)	(8.0011)
95% c.i.	(11.60 ; 46.71)	(-29.65 ; 8.79)	(9.77 ; 41.13)

Summary and conclusions

- Citizens willing to pay both for "environmentally-friendly" new windfarms, and the designation of new marine protected areas; willing to pay to avoid the siting of conventional windfarms (preference for the best available technology?)
- Considerable differences in the WTP for each of these options between the two areas (Apollo and Western Shoals)
- Substantial within-and between-class preference heterogeneity; LCMXL can provide its more sophisticated representation; estimation in WTPspace can make convergence more difficult
- The move to site new wind capacity off-shore changes and shifts economic costs (dis-amenity, effects on wildlife) spatially, but does not avoid them
- Such investments also create trade-off situations and it is still necessary to evaluate the relative environmental and economic benefits and costs