ESTIMATING CALL EXTERNALITIES IN MOBILE TELEPHONY IN POLAND

<u>Maciej Sobolewski</u>, Mikołaj Czajkowski University of Warsaw

Presentation on 2016 Warsaw International Economic Meeting, 29/06/2016

Agenda

- Problem Motivation
- Research Objectives
- Literature
- Data and Methodology
- Results
- Conclusions

Motivation

- Two types of economic externalities in mobile telecommunications
 - Network externalities induced by termination based discrimination
 - Call externalities induced by ,,calling party pays'' interconnection regime
- Network operators strategically adjust pricing to take advantage of both
- The outcomes are detrimental for social welfare
 - Too much on-net and too little off-net connectivity
- ...and dynamic competition
 - Too little entry on a market
 - Strategic disadvantage of late entrant (market share stealing effect, access deficit)

Empirical evidence: Excessive off-net calls asymmetry between 3MNO and P4 (Play)

 According to a common markup benchmark, prices for off-net calls to Play (green line) should have been on average 29% lower throughout the period 04.2010-03.2015 compared to actual levels of off-net prices set by incumbents in that period (violet line).

Objectives

- To identify and quantify receiver benefits at individual level
- To assess the impact of call externalities on the market shares of mobile operators in Poland
 - Policy exercise with two counterfactual scenarios
 - Common markup benchmark on incoming calls under asymmetric MTR
 - Equal off-net prices under symmetric MTR

Literature

- Network effects extensively studied in economics since (Katz and Shapiro, 1985).
- In telecommunications:
 - Are induced by termination based discrimination (<u>Laffont et al.,</u> <u>1998</u>)
 - Are not homogenous across all members of the network (<u>Maicas</u> and <u>Sese</u>, 2011)
 - Are localized among family and friends (<u>Corrocher and Zirulia</u>, <u>2009</u>)
 - Have diminishing marginal value and tend to exist even without on-net price discount (<u>Czajkowski and Sobolewski, 2011</u>)
 - Drive consumer choices (Maicas et al. 2009b; Sobolewski and Czajkowski 2012)
 - Impact network competition by creating lock-in (<u>Doganoglu and</u> <u>Grzybowski-2007</u>; <u>Grajek-2010</u>)

Literature

- Call externalities studied in economics since <u>Jeon et al. (2004)</u>
 - Building on canonical model of duopoly network competition from <u>Laffont et al., (1998</u>), in the presence of receiver benefits networks will strategically increase off-net prices to reduce the volume of outgoing calls and lower attractiveness of rival network (<u>Berger 2005</u>)
 - The greater the receiver benefits the greater the gap between off-net and on-net calls (<u>Jeon et al. 2004</u>)
 - Strategic overpricing effect increases with the market share and will have a detrimental impact on smaller networks in oligopoly causing access deficit and connectivity breakdown (<u>Armstrong and Wright</u> <u>2009</u>; <u>Hoernig</u>, 2007; <u>Calzada and Valletti 2008</u>)
 - Weak empirical evidence supporting call externalities is provided in (<u>Harbord and Pagnozzi 2010</u>)
 - There are no rigorous empirical studies related to identification and estimation of call externalities. Hence, our paper offers a clear value added

Data and Methodology

8

- We apply discrete choice experiment on two large representative samples of prepaid (N=1001) and postpaid subscribers (1029).
- We use Bayesian efficient design with 3 blocks. Each respondent had 12 choice situations with four alternatives; each described by 6 attributes.

l	Which of the following mobile phone operators	s' offers would you consider the best for yourself?
Т		

	Operator	ORANGE	T-MOBILE	PLUS	PLAY
	On-net price per minute (PLN)	0.2	0.1	0.3	0.2
	Off-net price per minute (PLN)	0.2	0.5	0.5	0.2
Call externality	Price of incoming off-net call, per minute (PLN)	0.3	0.3	0.3	0.3
Network ext.	'Family and Friends' in the same network	25%	25%	75%	75%
	'Others' in the same network	50%	50%	25%	75%
	Your choice				

Data and Methodology

- We apply random utility framework (McFadden 1974)
- $U_{i,s,r} = \beta_{SQ}SQ + \beta_{ORA}ORA + \beta_{TMB}TMB + \beta_{PLU}PLU + \beta_{PLA}PLA + \beta_{P_ON}P_{ON} + \beta_{P_OFF}P_{OFF} + \beta_{P_INCOFF}P_{INCOFF} + \beta_{FF}FF + \beta_{OTH}OTH + \varepsilon_{i,s,r}$
- > We use mixed logit to model choice obtained via survey.
 - Consumer *i* has specified, albeit non-observable, parameters of the utility function which follow a priori specified distributions in a population $\beta_i \sim f(b, \Sigma)$, where *b* is the vector of the mean values of parameters and Σ is their variance-covariance matrix. Unconditional choice probabilities P_{ijt} need to simulated, then estimators of *b*, Σ can be obtained from the following loglikelihc $\log L = \sum_{i=1}^{N} \ln \left(\int_{0}^{T} \prod_{ijt}^{T} P_{ijt}(\beta) f(\beta | \mathbf{b}, \Sigma) d\beta \right)$

Results (postpaid)

Table 5. Estimates of utility function parameters for postpaid subscribers.

- SQ and prices are log-normally distributed. Parameters for underlying norma distributions are provided.
- All three:
 - Switching costs
 - Call **externalities**
 - Network effects
- signifficant

	MNL	MXL_d		GMXL_d		MXL	
	coefficient	Mean	St. Dev.	Mean	St. Dev.	Mean	St. Dev.
	(s.e.)	(s.e.)	(s.e.)	(s.e.)	(s.e.)	(s.e.)	(s.e.)
	1,3207***	0,1088	1,8844***	0,2518***	1,9215***	0,2149***	1,5661***
SQ operator (SQ)	(0,0204)	(0,0904)	(0,1284)	(0,0927)	(0,1420)	(0,0838)	(0,1065)
	-0,2996***	-0,5445***	1,0605***	-0,6113***	1,1878***	-0,2746***	1,5055***
Orange vs. Play	(0,0279)	(0,0639)	(0,0700)	(0,0738)	(0,0816)	(0,1123)	(0,0891)
T Mobile vs. Play	-0,2780***	-0,6572***	1,0558***	-0,7591***	1,1840***	-0,4320***	1,5203***
I-Mobile vs. Play	(0,0285)	(0,0630)	(0,0671)	(0,0738)	(0,0763)	(0,1107)	(0,0897)
	-0,2303***	-0,5328***	0,9819***	-0,6288***	1,0889***	-0,2592***	1,4262***
Plus vs. Play	(0,0281)	(0,0602)	(0,0691)	(0,0708)	(0,0815)	(0,1085)	(0,0865)
a (a an)	6,6729***	2,2407***	0,8637***	2,4322***	0,7994***	2,1814***	1,1412***
On-net price (P_ON)	(0,1481)	(0,0436)	(0,0411)	(0,0478)	(0,0417)	(0,0577)	(0,0540)
Off-net price	4,8642***	1,8512***	0,9957***	2,0678***	0,8980***	1,5915***	1,4283***
(P_OFF)	(0,1468)	(0,0574)	(0,0596)	(0,0583)	(0,0485)	(0,0832)	(0,0675)
Incoming off-net	1,6027***	0,6950***	0,8834***	0,9709***	0,7920***	0,5138***	1,4786***
price (P_INCOFF)	(0,1400)	(0,1212)	(0,0955)	(0,1113)	(0,0856)	(0,1691)	(0,1071)
Family & Faire de (FF)	0,4470***	1,0536***	3,7206***	1,2365***	4,2326***	0,9718***	4,1352***
Family & Friends (FF)	(0,0544)	(0,1546)	(0,1590)	(0,1826)	(0,2003)	(0,2023)	(0,1993)
Others (OTU)	-0,0844	-0,1489	2,0590***	-0,1712	2,3391***	-0,0091	2,2718***
Others (OTH)	(0,0526)	(0,1077)	(0,1253)	(0,1254)	(0,1506)	(0,1476)	(0,1506)
Tau				3.1675***			
				(0.2708)			
		N	lodel charact	eristics			•
Log-likelihood	-	-		-		-	
(constants)	17011,1598	17011,1598		17011,1598		17011,1598	
	-	-		-		-	
Log-likelinood	13449,5980	10487,7399		10459,2453		10082,3011	
McFadden Pseuro-R ²	0.2094	0.3835		0.3852		0 4073	
Ben-Akiva Lerman	,			,			
Pseuro-R ²	0,3541	0,4694		0,4701		0,4830	
AIC/n	2,1799	1,7016		1,6972		1,6418	
n (# observations)	12348	12348		12348		12348	
k (# parameters)	9	18		19		54	
0 Source: Own calc	ulations				Significance a	t 196 596 109	6 level

1

ince at 170, 570,

Policy exercise

SC1: reduced off-net assymetry; SC2: full symmetry

difference in choice probability dP (scenario 1- baseline): Postpaid							
		MNL	MXL_d	GMXL_d	MXL		
010000	dP (s.e.)	0,71%***(0,11%)	0,61%***(0,09%)	0,89%***(0,12%)	0,82%***(0,13%)		
orange	95% c.i.	(0,49%;0,93%)	(0,43%;0,81%)	(0,67%;1,15%)	(0,59%;1,11%)		
tmobile	dP (s.e.)	0,77%***(0,08%)	0,55%***(0,06%)	0,67%***(0,07%)	0,58%***(0,06%)		
unobire	95% c.i.	(0,61%;0,93%)	(0,43%;0,68%)	(0,55%;0,82%)	(0,47%;0,71%)		
plus	dP (s.e.)	1,03%***(0,13%)	0,87%***(0,11%)	1,25%***(0,15%)	1,43%***(0,17%)		
prus	95% c.i.	(0,78%;1,28%)	(0,66%;1,1%)	(0,98%;1,56%)	(1,12%;1,8%)		
play	dP (s.e.)	-2,51%***(0,32%)	-2,02%***(0,26%)	-2,82%***(0,33%)	-2,83%***(0,32%)		
pray	95% c.i.	(-3,13%;-1,88%)	(-2,57%;-1,53%)	(-3,5%;-2,2%)	(-3,51%;-2,26%)		

difference in choice probability dP (scenario 2 - baseline): Postpaid

		_				_
		MNL	MXL_d	GMXL_d	MXL	
010000	dP (s.e.)	2,36%***(0,32%)	2,15%***(0,28%)	3,16%***(0,39%)	2,77%***(0,38%)	
orange	95% c.i.	(1,74%;2,97%)	(1,65%;2,74%)	(2,44%;3,97%)	(2,12%;3,61%)	
tmobile	dP (s.e.)	1,81%***(0,24%)	1,49%***(0,18%)	1,97%***(0,23%)	1,65%***(0,2%)	
unobire	95% c.i.	(1,35%;2,28%)	(1,15%;1,88%)	(1,54%;2,44%)	(1,29%;2,08%)	
plus	dP (s.e.)	2,88%***(0,37%)	2,64%***(0,33%)	3,88%***(0,47%)	4,1%***(0,49%)	
prus	95% c.i.	(2,16%;3,6%)	(2,03%;3,33%)	(3,03%;4,85%)	(3,23%;5,14%)	
play	dP (s.e.)	-7,05%***(0,92%)	-6,28%***(0,77%)	-9%***(1,06%)	-8,53%***(0,9%)	
pray	95% c.i.	(-8,84%;-5,24%)	(-7,91%;-4,87%)	(-11,18%;-7,04%)	(-10,48%;-6,93%)	
C		ſ				

Source: Own calculations.

Conclusions

- Call externalities are among important drivers of mobile operator choice for both prepaid and postpaid subscribers, next to price effects, switching costs and network effects.
- Consumers are discouraged to subscribe to networks for which incoming calls are higher
- Excessive asymmetry in off-net calls between 3 incumbent MNO and new entrant (P4) had detrimental impact on market share of P4.
- In reduced asymmetry scenario, under a common markup benchmark Play would gain 2.8 p.p in market share in postpaid segment
- Under full symmetry Play would gain 8.5 p.p.
- Regardless of the strategic impact of incumbents, asymmetric regulation of MTR is also costly for its beneficiaries. This has largely been overlooked in practical considerations.

The paper can be downloaded from czaj.org

Maciej.sobolewski@uw.edu.pl

UNIVERSITY OF WARSAW Faculty of Economic Sciences