### THE ROLE OF CONSEQUENTIALITY. EVIDENCE FROM A FIELD DISCRETE CHOICE EXPERIMENT

<u>Ewa Zawojska</u>, Wiktor Budziński, Mikołaj Czajkowski, Aleksandra Wiśniewska



University of Warsaw, Faculty of Economic Sciences ezawojska@wne.uw.edu.pl



Hypotheses S

Study design N

Methodology

Results



Do people ever reveal their preferences truthfully in surveys?

### Stated preference method

- Surveys are commonly used to determine public's preferences
- They are aimed at effective allocation and management of goods
- Stated people say what they would do
- Respondents are directly asked about their preferences, willingness to pay for a certain good/service
- A flexible method allows to valuate goods in hypothetical situations

A crucial question:

Do people answer truthfully in stated preference surveys?

#### Conditions for incentive compatibility (Carson and Groves, 2007)

Incentive compatibility = truthful preference revelation is respondent's optimal strategy

- 1. Respondents understand and answer the question being asked.
- The payment mechanism is coercive. (imposes payment on all agents)
- The survey is seen as a take-it-or-leave-it offer.
   (choices do not influence any other offers that may be made)
- 4. Respondents view the survey as consequential, which means:
  - their responses are seen as influencing agency's actions,
  - they care about the outcomes.
- 5. The survey has the format of a single binary choice question.(follows from the Gibbard-Satterthwaite theorem)

# Two approaches to testing the role of consequentiality

- 1. <u>Objective consequentiality</u> defined in a survey script by a researcher
- 2. <u>Subjective consequentiality</u> individual perceptions on survey consequentiality
  - Measured through self-reports to a direct question,
     e.g., "Do you believe that your votes will be taken into account by policy makers?"
  - Response scale
    - Binary yes/no (Broadbent, 2012)
    - Likert scale several degrees representing the strength of the belief (Herriges et al., 2010; Vossler et al., 2012; Vossler et al., 2013)

## Objective consequentiality

- <u>Laboratory experiments using induced values</u> analysis of the number of deviations from induced values (Collins and Vossler, 2009; Mitani and Flores, 2012; Polomé, 2003)
- <u>Laboratory experiments using home-grown values</u> towards a public good treatments with different probabilities of a referendum being binding (Cummings and Taylor, 1998) various weights assigned to respondents' votes (Vossler and Evans, 2009)
- <u>Field experiments with private goods</u> various probabilistic referenda (Carson, Groves, List and Machina, 2004; Landry and List, 2007)
- Field study of a naturally occurring referendum (Johnston, 2006)
- General conclusion: the consequential context fosters truthful preference revelation

#### Conclusions

### Subjective consequentiality

- <u>Laboratory experiments using home-grown values</u> towards a public good Broadbent (2012) – respondents perceiving an advisory survey as consequential do not reveal actual preferences; the only evidence contradicting the expectations
- Field studies using pubic goods

Herriges et al. (2010); Vossler et al. (2012); Vossler and Watson (2013) – respondents believing in survey consequentiality answer truthfully



- Examine whether consequentiality perceptions can be influenced by survey scripts
- Investigate the role of consequentiality in an actual (field) stated preference survey

### Research hypotheses

- <u>Hypothesis 1</u>: Emphasising consequentiality in a survey script strengthens the respondent's perception of consequentiality.
- <u>Hypothesis 2</u>: Consequentiality lowers the probability of choosing alternatives associated with high costs.
- <u>Hypothesis 3</u>: As the level of perceived consequentiality increases, respondents are more likely to choose a status quo (no cost) alternative.

Introduction

Results

### Study design

- Discrete Choice Experiment
- Hypothetical scenario: A program of cheap tickets to Warsaw theatres

|                          |                   | Alternative B         |  |  |
|--------------------------|-------------------|-----------------------|--|--|
|                          | Alternative A     | Continuation          |  |  |
|                          |                   | of the current policy |  |  |
| Entertainment theatres   | No change         | No change             |  |  |
| Drama repertory theatres | Tickets for 5 PLN | No change             |  |  |
| Children's theatres      | No change         | No change             |  |  |
| Experimental theatres    | Tickets for 5 PLN | No change             |  |  |
| Annual cost for you      | 100 PLN           | o PLN                 |  |  |
| Your choice              |                   |                       |  |  |

- 12 choice sets per respondent
- Online survey
- A representative sample of 1,700 inhabitants of Warsaw

### Study design

- Objective consequentiality
  - 4 treatments with survey scripts differing in the emphasis put on consequentiality
  - Split-sample
  - 1 the weakest, 4 the strongest consequentiality
- Subjective consequentiality
  - Measured through a follow-up question: "Do you think that the choices made by you in this survey will have an impact on future decisions on financing of theatres in Warsaw?"
  - A five-degree Likert scale response
  - 1 definitely no, 5 definitely yes

Introduction

#### Econometric approach Hybrid Choice Model

- Standard random utility model (McFadden, 1974)
- Hybrid choice models
  - Incorporate attitudes and perceptions
  - Improve the representation of the decision process
  - Allow more flexibility and realism





Introduction Literature Hypotheses Study design Methodology Results Conclusions

### Econometric approach

Formally, the standard random utility model:

• Structural equation

$$U_{in} = X_{in}\beta + \upsilon_{in} \tag{1}$$

• Measurement equation

$$y_{in} = \begin{cases} 1 & \text{if } U_{in} \ge U_{jn}, \forall j \in C_n, j \neq i \\ 0 & \text{otherwise} \end{cases}$$
(2)

 $U_{in}$  – utility of individual *n* from alternative *i* 

 $X_{in}$  – a vector of explanatory variables (attributes) specific to individual *n* and alternative *i*  $\beta$  – a vector of coefficients

 $v_{in}$  – an error term

 $y_{in}$  – an indicator whether alternative *i* is chosen by individual *n* 

 $C_n$  – a set of available alternatives to individual n

Introduction Literature Hypotheses Study design Methodology Results Conclusions

#### Econometric approach Hybrid Choice Model

• Structural equations

 $z_n^* = \Pi z_n^* + Bw_n + \zeta_n = (I_L - \Pi)^{-1} Bw_n + (I_L - \Pi)^{-1} \zeta_n, \quad \zeta_n \sim N(0, \Psi)$ (3)

$$U_n = X_n \beta + \Gamma z_n^* + \upsilon_n \tag{4}$$

 $z_n^*$  – a vector of latent variables,

 $w_n$  – a vector of explanatory variables,

 $B, \Gamma$  – vectors of coefficients

 $\zeta_n$  – an error term

• Measurement equations

$$I_n = \alpha + \Lambda z_n^* + \varepsilon_n, \quad \varepsilon_n \sim N(0, \Theta)$$
(5)

$$y_{in} = \begin{cases} 1 & \text{if } U_{in} \ge U_{jn}, \forall j \in C_n, j \neq i \\ 0 & \text{otherwise} \end{cases}$$
(6)

 $I_n$  – a vector of indicators of latent variables,  $\Lambda$  – a vector of coefficients

 $\alpha$  – a vector of constants,

$$\varepsilon_n$$
 – an error term

#### Introduction Literature Hypotheses Study design Methodology Results Conclusions

### Our model Hybrid Mixed Logit

- Hybrid choice model with random parameters, in willingness-to-pay (WTP) space
- Incorporate heterogeneity into consumers' utility coefficients

$$U_n = X_n \beta_n \delta_n + \delta_n c_n + \upsilon_n$$

 $X_n$  – a vector of non-monetary attributes;  $c_n$  – a monetary attribute

 $\beta_n$  – individual specific (random) parameters, normally distributed in the population (marginal money-metric utilities);

 $\delta_n$  – individual specific (random) cost parameters, log-normally distributed;  $\beta_n$  and  $\delta_n$  – means of the distributions accept latent variables as explanatory variables

- Measurement equation modelled as ordered probit
- Maximum simulated likelihood estimation; 1,000 shuffled Halton draws

### Structural equation

Dependent variable: Intrinsic consequentiality perception (latent variable, LV)

|                    | Coeff.  | St. Error |       |
|--------------------|---------|-----------|-------|
| Objective conseq.  | 0.0576  | [0.0221]  | * * * |
| Female             | 0.1605  | [0.0227]  | * * * |
| Age                | -0.0348 | [0.0222]  |       |
| High school degree | 0.0614  | [0.0327]  | *     |
| University degree  | -0.0057 | [0.0332]  |       |
| Individual income  | -0.1316 | [0.0324]  | * * * |
| Household income   | 0.1352  | [0.0321]  | * * * |
| Household size     | 0.0561  | [0.0239]  | * *   |
| Children           | 0.0237  | [0.0227]  |       |
| Have a job         | 0.0820  | [0.0231]  | * * * |

\*\*\*, \*\*, \* - Significance at the 1%, 5% and 10% level, respectively.

#### Measurement equation

Dependent variable: Indicators of consequentiality perception (self-reports)

|                 | Coeff.  | St. Error |       |
|-----------------|---------|-----------|-------|
| Latent variable | 0.1648  | [0.0355]  | * * * |
| Threshold 1     | -1.6167 | [0.0511]  | * * * |
| Threshold 2     | -0.7373 | [0.0720]  | * * * |
| Threshold 3     | 0.6170  | [0.0717]  | * * * |
| Threshold 4     | 1.5907  | [0.0752]  | * * * |

| LL <sub>constant</sub> | -16,153.3 |
|------------------------|-----------|
| LL <sub>model</sub>    | -11,319.1 |
| Pseudo-R <sup>2</sup>  | 0.2993    |
| AIC/n                  | 1.1130    |
| Observations           | 20,400    |

### Structural equation

Dependent variable: Intrinsic consequentiality perception (latent variable, LV)

|                    | Coeff.  | St. Error |       |
|--------------------|---------|-----------|-------|
| Objective conseq.  | 0.0576  | [0.0221]  | ***   |
| Female             | 0.1605  | [0.0227]  | * * * |
| Age                | -0.0348 | [0.0222]  |       |
| High school degree | 0.0614  | [0.0327]  | *     |
| University degree  | -0.0057 | [0.0332]  |       |
| Individual income  | -0.1316 | [0.0324]  | * * * |
| Household income   | 0.1352  | [0.0321]  | * * * |
| Household size     | 0.0561  | [0.0239]  | * *   |
| Children           | 0.0237  | [0.0227]  |       |
| Have a job         | 0.0820  | [0.0231]  | * * * |

\*\*\*, \*\*, \* - Significance at the 1%, 5% and 10% level, respectively.

#### <u>Hypothesis 1</u>:

Emphasising consequentiality in a survey script strengthens the respondent's perception of consequentiality.

### Discrete Choice Experiment (WTP-space)

Hypotheses

|                             |        | Means     |       | Stan   | dard Deviat | ions  | Intei   | raction with | ו LV  |
|-----------------------------|--------|-----------|-------|--------|-------------|-------|---------|--------------|-------|
|                             | Coeff. | St. Error |       | Coeff. | St. Error   |       | Coeff.  | St. Error    |       |
| Status Quo                  | 0.0130 | [0.0127]  |       | 0.4185 | [0.0112]    | * * * | -0.0589 | [0.0156]     | * * * |
| Entertainment<br>theatres   | 0.3271 | [0.0109]  | * * * | 0.0965 | [0.0157]    | * * * | 0.3139  | [0.0146]     | ***   |
| Drama repertory<br>theatres | 0.2138 | [0.0097]  | * * * | 0.1452 | [0.0114]    | * * * | 0.1964  | [0.0138]     | ***   |
| Children's theatres         | 0.1019 | [0.0092]  | * * * | 0.1536 | [0.0109]    | * * * | 0.0648  | [0.0132]     | ***   |
| Experimental<br>theatres    | 0.1025 | [0.0089]  | * * * | 0.1513 | [0.0105]    | * * * | 0.1163  | [0.0133]     | ***   |
| Cost                        | 2.1810 | [0.0603]  | * * * | 1.0920 | [0.0676]    | * * * | -0.6235 | [0.0752]     | ***   |

\*\*\* - Significance at the 1% level.

### Discrete Choice Experiment (WTP-space)

Hypotheses

|                             | Means Standard Deviations                               |                   | Interaction with LV |              |  |
|-----------------------------|---------------------------------------------------------|-------------------|---------------------|--------------|--|
|                             | Coeff. St. Error                                        | Coeff. St. Error  | Coeff.              | St. Error    |  |
| Status Quo                  |                                                         |                   | -0.0589             | [0.0156] *** |  |
| Entertainment<br>theatres   | <u>Hypothesis 2</u> : Consequence                       | ventiality lowers | 0.3139              | [0.0146] *** |  |
| Drama repertory<br>theatres | associated with high c                                  | 0.1964            | [0.0138] ***        |              |  |
| Children's theatres         | <u>Hypothesis 3</u> : As the le consequentiality increa | 0.0648            | [0.0132] ***        |              |  |
| Experimental theatres       | are more likely to choc<br>(no cost) alternative.       | ose a status quo  | 0.1163              | [0.0133] *** |  |
| Cost                        |                                                         |                   | -0.6235             | [0.0752] *** |  |

\*\*\* - Significance at the 1% level.

### Conclusions

## Remaining questions

Results

Conclusions

- Consequentiality matters decreases the probability of choosing status quo, increases WTP values
- Consequentiality should not be ignored in stated preference surveys.
- Survey scripts may serve as a tool to influence consequentiality perceptions.

• Why is the influence of perceived consequentiality reverse to what is expected?

• To what extent do survey scripts influence consequentiality perceptions?

## Thank you for attention

Ewa Zawojska

University of Warsaw, Faculty of Economic Sciences

ezawojska@wne.uw.edu.pl